Suggested solution of HW3

Chapter 2 Q11: (a) By scaling, we assume R = 1. Consider g = f o ¢ where ¢(2) = 12—:—7a .
az
By Cauchy formula, we get
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We now perform change of coordinate w = ¢(z). We have
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Also, ¢ map 0D to D bijectively. Thus,
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(b) Follows from direct computation.
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Chapter 2 Q12: (a) Let g(z) = 28—u. Since u is harmonic,
z

0 0 0

Hence, g(z) is holomorphic. As I is simply connected, g has a primitive F on D,
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— — )
0z =9(z) = 28z'

Since F' is analytic, using the fact that 8—}; = 0, we have
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From 0, F = 0, Re(F) + i0,Im(F), we know that
O0x [Re(F) —u] =0

and similarly from 0, F,
Oy [Re(F) —u] = 0.
That show that Re(F') = u+ C for some real constant C' (viewing it as a function

on R?). By considering F — C, we may assume C = 0. Suppose fi, fo are two

analytic functions so that

Re(f;) = u.



Then h(z) = f1(2) — f2(2) is analytic and by CR equation
V(Im(h)) = (&clm(h),@ylm(h)) —0.

Therefore, they only differ by a real constant.

(b) By part (a), there exists a holomorphic function f such that Re(f) = u. Applying
the formula in Q11 on a slightly smaller ball B(r) and takes real part on both

side. The result follows by taking r — 1.

Remark : One can also show it by proving the Poisson integral formula agrees with
u on the boundary. By Maximum Principle, v agree with the Poisson formula in the

interior as well. It can be seen that the integral representation of f in Q11 can also

be obtained from the Poisson formula of its real part and imaginary part.

Chapter 3 Q15: (a) Writting f(2) = Y. ganz". For n > k, by Cauchy formula,

1
ap = — 1(z) dz.
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Thus,
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Thus, f is a polynomial of degree at most k

(d) By translation and scaling, we can assume f(C) C {z: 0 < Re(z) < 1}. Consider

g(z) = ¢, g is a bounded entire function. Thus g is constant implying f is also

a constant function.

Chapter 3 Q19: (a) Assume u attain a maximum at p in €2, there exists r > 0 such that B(p,r) C Q.
By previous exercise, there exists a holomorphic function f on B(p,r) such that

Re(f) = u. But it contradicts with open mapping theorem. So it is impossible.

(b) Tt is a direct consequence of part (a).

Remark : One can also prove it directly using the mean value property (Strong

Maximum Principle) of harmonic function.

Chapter 5 Q4: (a)
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Consider the series Z le=2™"te2™i2| Choose N = |z|/t yields
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Thus, []72 5 (1 — e~ ?™e?™%) is bounded above by a constant C;. Now we esti-

mate the term with finite elements.
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for some constant c¢i,co > 0. So F' is of order < 2.

Now we claim the reverse inequality. It can be observed that m — int are the
zeros of F'. And for p < 2,
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by comparing this with / / T dy.

(22 + 12y2)P/2 d

An alternative way is to estimate M (r), we argue as follows.

For |z| = r, where r is sufficiently large. Writing iz = z + iy, denote e=2™"¢
by R, it can be checked that

‘1 _ e—27rnt627mz|2 1— 2R627ra: cosy + R2 47rz

So, the maximum is at least Re>™"*~™ when 7 is large enough. Denote M (r)
to be the maximum of F(z) on B(r). We deduce that
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Taking log gives,
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Since log(1+z) > z/2 whenever 0 < z < 1/2, the second terms is bounded below
by Cy if we choose N = (log2 + 27r)/2nt.
On the other hand,
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Noted that for z € [1, N/2], W

is bounded below by 1/4 when r — cc.
So we have for some constant C' = C(¢) > 0,
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Combining all the inequalities, we can see that lim,._, - > C for some

constant C' > 0. Thus, the order is at least 2.

(b) F(z) = 0 iff one of its factors is 0. So, it vanishes exactly when z = —int +m for

n > 1, m,n are integers.
Chapter 5 Qb:
o0 «@ :
Fa(Z) _ / e—|t\ eZﬂzzt dt
—00

Noted that

; _ o a/a—1
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where C1 is a constant obtained from Young ‘s inequality.
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So, Ord(f) < a/a —1.

To show the reverse inequality, we make use of the Jensen’s inequality.

/abf(x) dx

Put iz=2 € R, forany R >0

1 b
i.e. log > m/ log((b—a)f(x)) dz, V integrable f > 0.

R
log F,(z) > log { —t% g2mat dt} > log [/ et e2met dt]
0
o I
/ log[R-e " €™ dt =log R+ — / (2mxt — t%) dt
R Jo
=logR R— .
og i+ mx a1
Choose R such that mo = 25 R*~! implying
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where C = (2ftm)t/ (=D,
This show that the order of F, is at least /(v — 1).



Chapter 5 Q10:

Chapter 5 Q11:

Chapter 5 Q14:

e —1= ez/2 (ez/Q _ 672/2)
= 2¢*/? sinh(z/2)
= —i2e*/?sin(iz/2)

But we have

So

iz 22 = 22
T 1= —i2e/2(= 1+ —=— ) =e*/? 1+-——).
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(b) Since we have
o
4 2
sin2z = 2z H (1 — 7;712)
n=1

and

sin 2z = 2sin z cos z

We deduce that

- L () - I e

n is odd. n=0

By multiplication and substraction, we can assume f miss 0 and 1. By Hadamard’s

theorem, we have
f(z) = eP(2) = Q=) 4 q

for some poly P(z) and Q(z) with same degree. If degree is non-zero, by fundamental
theorem of algebra, there exists z such that Q(z9) = iw. Thus, e”’*0) = 0 which is

impossible. So both P(z) and Q(z) are constant function, implying f is constant.
Assume F' has finitely many zeros. By Hadamard’s factorization theorem,
N
F(z) =P m H Ey(z/an)
n=1

for some ay, as, ...an, where P is a polynomial of degree k < p. But then F' is of order

k instead of p. Contradict with our assumption.



Chapter 5 Q15: Suppose f has poles at {a, }nen counting with multiplicity. Let g be a entire function
having zeros precisely at {a,} by weierstrass factorization theorem. Hence f(z)g(z)

is entire.
Similarly, let f(z),g(z) be entire functions having zeros precisely at {a,} and {b,}
respectively. Then the function f(z)/g(z) = h(z) is the desired entire function.

Chapter 6 Q5: Put s = 1/2 + it into the product formula of T'(s), we have

™
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But ['(z) = [T e "t*~1 dt, so T(z) =T'(z).

T(1/2 + it)T(1/2 + it) = D(1/2 + it)[(1/2 — it)
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Chapter 6,Q12: (a) Noted that for all s € C,
1 sin s
_— = T'(1—s).
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Put s = —k — 1/2, gives
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By the functional equation of I', we get
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Thus,
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Taking log, one can observe that

1
log ——— > 1 — klog4.
og|F(s)|_Cl+k: ogk — klog

So the order of growth cannot be O(ecl®)).



(b) If we can find such entire function F. Clearly, the order of growth of F' is 1. By

Hadamard’s factorization theorem,

F _ ,Az+B E _i _ ,Az+B 1 2 —z/n-
(z)=¢e znl;[l 1( n) e zg( —l—n)e
Thus,
1

I'(2)

= e BF(2)e*(=41),

The right hand side is of order O(ecl?l) while left hand side not. So contradiction

occurred.

Extra question: If a € (0,1], we consider the contour v from ¢ — iR — ¢ + iR and followed by a

semi-circular arc L of radius R centered at c¢ in clockwise direction. Therefore,

1 a”

— P —=dz=0.
2mi J, 2(z + 1) :

On the other hand, as 0 < a <1, |a*] < afe®) <1 on L.

a® 1
" 4 < CO(— .
Lz(z+1)dz|_O(R) O(R2)—>O as R— o0

Result follows.

If @ > 1, consider the contour v from ¢ — iR — ¢+ iR and followed by a semi-circular

arc L of radius R centered at ¢ in anti-clockwise direction.

1 a® 1
—_— —_— d e —]_ = ]_ —_ .
i P2+ z = Res(f,0) + Res(f,—1) .

Argue as first case, we know that
|/ f(z)dz] =0 as R— .
LN{Rez<0}

On L N {Rez > 0}, by symmetry, the total integral is 0. Or you can use a better
contour consisting of {x + iR : z € [0,c]}, {z — iR : x € [0,¢]} and a semi-circlar arc

centered at 0 with radius R. The computation is almost same.



