
Suggested solution of HW3

Chapter 2 Q11: (a) By scaling, we assume R = 1. Consider g = f ◦ φ where φ(z) =
z + a

1 + āz
.

By Cauchy formula, we get

f(a) = g(0) =
1

2πi

˛
∂B(1)

g(z)

z
dz =

1

2πi

˛
∂B(1)

f ◦ φ(z)

z
dz.

We now perform change of coordinate w = φ(z). We have

dz

dw
=

1− |a|2

(1− āw)2
6= 0 and z =

w − a
1− āw

.

Also, φ map ∂D to ∂D bijectively. Thus,

f(a) =
1

2πi

˛
∂B(1)

f(w)

w − a
· 1− |a|2

1− āw
dw

=
1

2π

ˆ 2π

0

f(eiθ)

eiθ − a
· 1− |a|2

1− āeiθ
· eiθ dθ

=
1

2π

ˆ 2π

0

f(eiθ)(1− |a|2)

(eiθ − a)(e−iθ − ā)
dθ

=
1

2π

ˆ 2π

0

f(eiθ)Re

(
eiθ + a

eiθ − a

)
dθ.

(b) Follows from direct computation.

Chapter 2 Q12: (a) Let g(z) = 2
∂u

∂z
. Since u is harmonic,

∂

∂z̄

∂

∂z
u = 0 =⇒ ∂

∂z̄
g = 0.

Hence, g(z) is holomorphic. As D is simply connected, g has a primitive F on D,

∂F

∂z
= g(z) = 2

∂u

∂z
. Since F is analytic, using the fact that ∂F

∂z̄ = 0, we have

∂F

∂z
=
∂F

∂x
= −i∂F

∂y
= 2

∂u

∂z
=
∂u

∂x
− i∂u

∂y
.

From ∂xF = ∂xRe(F ) + i∂xIm(F ), we know that

∂x [Re(F )− u] = 0

and similarly from ∂yF ,

∂y [Re(F )− u] = 0.

That show that Re(F ) = u+C for some real constant C (viewing it as a function

on R2). By considering F − C, we may assume C = 0. Suppose f1, f2 are two

analytic functions so that

Re(fi) = u.
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Then h(z) = f1(z)− f2(z) is analytic and by CR equation

∇(Im(h)) =
(
∂xIm(h), ∂yIm(h)

)
= 0.

Therefore, they only differ by a real constant.

(b) By part (a), there exists a holomorphic function f such that Re(f) = u. Applying

the formula in Q11 on a slightly smaller ball B(r) and takes real part on both

side. The result follows by taking r → 1.

Remark : One can also show it by proving the Poisson integral formula agrees with

u on the boundary. By Maximum Principle, u agree with the Poisson formula in the

interior as well. It can be seen that the integral representation of f in Q11 can also

be obtained from the Poisson formula of its real part and imaginary part.

Chapter 3 Q15: (a) Writting f(z) =
∑∞
n=0 anz

n. For n > k, by Cauchy formula,

an =
1

2πi

˛
∂B(R)

f(z)

zn+1
dz.

Thus,

|an| ≤
1

2π

ˆ 2π

0

ARk +B

Rn
dθ → 0 as R→∞.

Thus, f is a polynomial of degree at most k

(d) By translation and scaling, we can assume f(C) ⊂ {z : 0 ≤ Re(z) ≤ 1}. Consider

g(z) = ef , g is a bounded entire function. Thus g is constant implying f is also

a constant function.

Chapter 3 Q19: (a) Assume u attain a maximum at p in Ω, there exists r > 0 such that B(p, r) ⊂ Ω.

By previous exercise, there exists a holomorphic function f on B(p, r) such that

Re(f) = u. But it contradicts with open mapping theorem. So it is impossible.

(b) It is a direct consequence of part (a).

Remark : One can also prove it directly using the mean value property (Strong

Maximum Principle) of harmonic function.

Chapter 5 Q4: (a)

F (z) =

N−1∏
n=1

(1− e−2πnte2πiz) ·
∞∏
n=N

(1− e−2πnte2πiz)

Consider the series

∞∑
N+1

|e−2πnte2πiz|. Choose N ≈ |z|/t yields

∞∑
n=N

|e−2πnte2πiz| ≤ e−2πIm(z)
∞∑
n=N

e−2πnt ≤ e2π|z| e
−2πtN

1− e−2πt
≤ 1

1− e−2πt
.
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Thus,
∏∞
n=N (1− e−2πnte2πiz) is bounded above by a constant Ct. Now we esti-

mate the term with finite elements.

N−1∏
n=1

(1− e−2πnte2πiz) ≤ (1 + e2π|z|)N ≤ 2Ne2π|z|N ≤ ec1|z|+c2|z|
2

for some constant c1, c2 > 0. So F is of order ≤ 2.

Now we claim the reverse inequality. It can be observed that m − int are the

zeros of F . And for p ≤ 2,

∞∑
n=1

∞∑
m=−∞

1

|m− int|p
=

∞∑
n=1

∞∑
m=−∞

1

(m2 + n2t2)p/2
= +∞

by comparing this with

ˆ ∞
1

ˆ ∞
1

1

(x2 + t2y2)p/2
dx dy.

An alternative way is to estimate M(r), we argue as follows.

For |z| = r, where r is sufficiently large. Writing iz = x + iy, denote e−2πnt

by R, it can be checked that

|1− e−2πnte2πiz|2 = 1− 2Re2πx cos y +R2e4πx.

So, the maximum is at least Re2π
√
r2−π2

when r is large enough. Denote M(r)

to be the maximum of F (z) on B(r). We deduce that

M(r) >

∞∏
n=1

(1 + e−2πnte2π
√
r2−π2

) ≈
∞∏
n=1

(1 + e−2πnte2πr).

Taking log gives,

logM(r) ≥
∞∑
n=1

log(1+e−2πnte2πr) =

N∑
n=1

log(1+e−2πnte2πr)+

∞∑
n=N+1

log(1+e−2πnte2πr)

Since log(1+z) ≥ z/2 whenever 0 < z < 1/2, the second terms is bounded below

by Ct if we choose N ≈ (log 2 + 2πr)/2πt.

On the other hand,

N∑
n=1

log(1 + e−2πnte2πr) ≥
ˆ N

1

log(1 + e2πre−2πxt) dx

>

ˆ N/2

1

log(1 + e2πre−2πxt) dx

= x log(1 + e2πre−2πxt)

∣∣∣∣N/2
1

+

ˆ N/2

1

2πx · e2πr

e2πxt + e2πr
dx.
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Noted that for x ∈ [1, N/2],
e2πr

e2πxt + e2πr
is bounded below by 1/4 when r →∞.

So we have for some constant C = C(t) > 0,

N∑
n=1

log(1 + e−2πnte2πr) ≥
ˆ N

1

log(1 + e2πre−2πxt) dx

>
log 2 + 2πr

4πt
log

(
1 +

eπr√
2

)
+
π

4

[
log 2 + 2πr

4πt

]2

− C.

Combining all the inequalities, we can see that limr→∞
logM(r)

r2 > C̃ for some

constant C̃ > 0. Thus, the order is at least 2.

(b) F (z) = 0 iff one of its factors is 0. So, it vanishes exactly when z = −int+m for

n ≥ 1, m,n are integers.

Chapter 5 Q5:

Fα(z) =

ˆ ∞
−∞

e−|t|
α

e2πizt dt

Noted that

|e2πizt| = e−2πtIm(z) ≤ e2π|t||z| ≤ e|t|
α/α · eC1|z|α/α−1

where C1 is a constant obtained from Young ‘s inequality.

Fα(z) =

ˆ ∞
−∞

e−|t|
α

e2πizt dt ≤ eC1|z|α/α−1

ˆ ∞
−∞

e−|t|
α

e|t|
α/α dt = C2e

C1|z|α/α−1

.

So, Ord(f) ≤ α/α− 1.

To show the reverse inequality, we make use of the Jensen’s inequality.

i.e. log

[ˆ b

a

f(x) dx

]
≥ 1

b− a

ˆ b

a

log((b− a)f(x)) dx, ∀ integrable f ≥ 0.

Put iz = x ∈ R, for any R > 0

logFα(z) ≥ log

[ˆ ∞
0

e−t
α

e2πxt dt

]
≥ log

[ˆ R

0

e−t
α

e2πxt dt

]

≥ 1

R

ˆ R

0

log[R · e−t
α

e2πxt] dt = logR+
1

R

ˆ R

0

(2πxt− tα) dt

= logR+ πxR− Rα

α+ 1
.

Choose R such that πx = 2
α+1R

α−1 implying

logFα(z) ≥ logR+
1

α+ 1
Rα =

1

α− 1
log x+ Cαx

α
α−1 + logC

where C = (α+1
2 π)1/(α−1).

This show that the order of Fα is at least α/(α− 1).
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Chapter 5 Q10: (a)

ez − 1 = ez/2
(
ez/2 − e−z/2

)
= 2ez/2 sinh(z/2)

= −i2ez/2 sin(iz/2)

But we have

sin z = z

∞∏
n=1

(
1− z2

π2n2

)
.

So

ez − 1 = −i2ez/2(
iz

2
)

∞∏
n=1

(
1 +

z2

4π2n2

)
= ez/2z

∞∏
n=1

(
1 +

z2

4π2n2

)
.

(b) Since we have

sin 2z = 2z

∞∏
n=1

(
1− 4z2

π2n2

)
and

sin 2z = 2 sin z cos z

We deduce that

cos z =
1

2
· 2z

∞∏
n=1

(
1− 4z2

π2n2

)
·

[
z

∞∏
n=1

(
1− z2

π2n2

)]−1

=
∏

n is odd.

(
1− 4z2

π2n2

)
=

∞∏
n=0

(
1− 4z2

π2(2n+ 1)2

)
.

Chapter 5 Q11: By multiplication and substraction, we can assume f miss 0 and 1. By Hadamard’s

theorem, we have

f(z) = eP (z) = eQ(z) + 1

for some poly P (z) and Q(z) with same degree. If degree is non-zero, by fundamental

theorem of algebra, there exists z0 such that Q(z0) = iπ. Thus, eP (z0) = 0 which is

impossible. So both P (z) and Q(z) are constant function, implying f is constant.

Chapter 5 Q14: Assume F has finitely many zeros. By Hadamard’s factorization theorem,

F (z) = eP (z)zm
N∏
n=1

Ek(z/an)

for some a1, a2, ...aN , where P is a polynomial of degree k < ρ. But then F is of order

k instead of ρ. Contradict with our assumption.
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Chapter 5 Q15: Suppose f has poles at {an}n∈N counting with multiplicity. Let g be a entire function

having zeros precisely at {an} by weierstrass factorization theorem. Hence f(z)g(z)

is entire.

Similarly, let f(z), g(z) be entire functions having zeros precisely at {an} and {bn}
respectively. Then the function f(z)/g(z) = h(z) is the desired entire function.

Chapter 6 Q5: Put s = 1/2 + it into the product formula of Γ(s), we have

Γ(1/2 + it)Γ(1/2− it) =
π

sinπ(1/2 + it)
.

But Γ(z) =
´∞

0
e−ttz−1 dt, so Γ(z) = Γ(z̄).

Γ(1/2 + it)Γ(1/2 + it) = Γ(1/2 + it)Γ(1/2− it)

=
π

sinπ(1/2 + it)

=
2π

eπt + e−πt
.

Chapter 6,Q12: (a) Noted that for all s ∈ C,

1

Γ(s)
=

sinπs

π
Γ(1− s).

Put s = −k − 1/2, gives

1

|Γ(s)|
=

1

π
|Γ(k + 3/2)| .

By the functional equation of Γ, we get

Γ(k + 1)Γ(k + 3/2) =
√
π2−2k−1Γ(2k + 2) =

√
π2−2k−1(2k + 1)!.

Thus,

1

|Γ(s)|
=

1

π
|Γ(k + 3/2)|

=
(2k + 1)!√
π · k!22k+1

=
1

2
√
π

2k + 1

4
· 2k

4
· · · k + 1

4

≥ 1

2
√
π

(
k

4

)k
.

Taking log, one can observe that

log
1

|Γ(s)|
≥ C1 + k log k − k log 4.

So the order of growth cannot be O(ec|s|).
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(b) If we can find such entire function F . Clearly, the order of growth of F is 1. By

Hadamard’s factorization theorem,

F (z) = eAz+Bz

∞∏
n=1

E1(− z
n

) = eAz+Bz

∞∏
n=1

(1 +
z

n
)e−z/n.

Thus,

1

Γ(z)
= e−BF (z)ez(−A+γ).

The right hand side is of order O(ec|z|) while left hand side not. So contradiction

occurred.

Extra question: If a ∈ (0, 1], we consider the contour γ from c − iR → c + iR and followed by a

semi-circular arc L of radius R centered at c in clockwise direction. Therefore,

1

2πi

˛
γ

az

z(z + 1)
dz = 0.

On the other hand, as 0 < a ≤ 1, |az| ≤ aRe(z) ≤ 1 on L.

|
ˆ
L

az

z(z + 1)
dz| ≤ O(R) ·O(

1

R2
)→ 0 as R→∞.

Result follows.

If a > 1, consider the contour γ from c− iR→ c+ iR and followed by a semi-circular

arc L of radius R centered at c in anti-clockwise direction.

1

2πi

˛
γ

az

z(z + 1)
dz = Res(f, 0) +Res(f,−1) = 1− 1

a
.

Argue as first case, we know that

|
ˆ
L∩{Rez≤0}

f(z) dz| → 0 as R→∞.

On L ∩ {Rez > 0}, by symmetry, the total integral is 0. Or you can use a better

contour consisting of {x + iR : x ∈ [0, c]}, {x − iR : x ∈ [0, c]} and a semi-circlar arc

centered at 0 with radius R. The computation is almost same.

7


